

Selected Equations and Data

CHAPTER 1

$$Value = \frac{FCF_1}{\left(1 + WACC\right)^1} + \frac{FCF_2}{\left(1 + WACC\right)^2} + \frac{FCF_3}{\left(1 + WACC\right)^3} + \dots + \frac{FCF_{\infty}}{\left(1 + WACC\right)^{\infty}}$$

CHAPTER 2

EBIT = Earnings before interest and taxes = Sales revenues - Operating costs

 $\begin{array}{l} {\rm EBITDA} = {\rm Earnings} \ {\rm before} \ {\rm interest}, \ {\rm taxes}, \ {\rm depreciation} \ {\rm and} \ {\rm amortization} \\ = {\rm EBIT} \ + \ {\rm Depreciation} \ + \ {\rm Amortization} \end{array}$

Net cash flow = Net income + Depreciation and amortization

NOWC = Net operating working capital

 $= Operating \ current \ assets - Operating \ current \ liabilities$

$$= \left(\begin{array}{c} Cash + Accounts \ receivable \\ + \ Inventories \end{array} \right) - \left(\begin{array}{c} Accounts \ payable \\ + \ Accruals \end{array} \right)$$

Total net operating capital = Net operating working capital + Operating long-term assets

NOPAT = Net operating profit after taxes = EBIT(1 - Tax rate)

 $\begin{aligned} \text{Free cash flow (FCF)} &= \text{NOPAT} - \text{Net investment in operating capital} \\ &= \text{NOPAT} - \left(\begin{array}{c} \text{Current year's total} \\ \text{net operating capital} \end{array} \right) - \begin{array}{c} \text{Previous year's total} \\ \text{net operating capital} \end{array} \right) \end{aligned}$

Operating cash flow = NOPAT + Depreciation and amortization

 $\frac{\text{Gross investment in}}{\text{operating capital}} = \frac{\text{Net investment}}{\text{in operating capital}} + \text{Depreciation}$

Return on invested capital (ROIC) =
$$\frac{\text{NOPAT}}{\text{Total net operating capital}}$$

$$= \left(\begin{array}{c} \text{Market value of stock} \\ + \text{ Market value of debt} \end{array} \right) - \text{Total investor-supplied capital}$$

$$EVA = \left(\begin{array}{c} Net \ operating \ profit \\ after \ taxes(NOPAT) \end{array} \right) - \left(\begin{array}{c} After\text{-tax dollar cost of capital} \\ used \ to \ support \ operations \end{array} \right)$$

$$Current ratio = \frac{Current assets}{Current liabilities}$$

Quick, or acid test, ratio =
$$\frac{\text{Current assets} - \text{Inventories}}{\text{Current liabilities}}$$

Inventory turnover ratio =
$$\frac{\text{Sales}}{\text{Inventories}}$$

$$DSO = Days \ sales \ outstanding = \frac{Receivables}{Average \ sales \ per \ day} = \frac{Receivables}{Annual \ sales/365}$$

Fixed assets turnover ratio =
$$\frac{\text{Sales}}{\text{Net fixed assets}}$$

Total assets turnover ratio =
$$\frac{\text{Sales}}{\text{Total assets}}$$

$$Debt \ ratio = \frac{Total \ liabilities}{Total \ assets}$$

$$\label{eq:market_debt} \text{Market debt ratio} = \frac{\text{Total liabilities}}{\text{Total liabilities} + \text{Market value of equity}}$$

$$Debt\text{-to-equity ratio} = \frac{Total\ liabilities}{Total\ assets\ -\ Total\ liabilities}$$

$$Debt\text{-to-equity} = \frac{Debt \ ratio}{1 - Debt \ ratio} \ and \ Debt \ ratio \ = \ \frac{Debt\text{-to-equity}}{1 + Debt\text{-to-equity}}$$

Equity multiplier =
$$\frac{\text{Total assets}}{\text{Common equity}}$$

Debt ratio =
$$1 - \frac{1}{\text{Equity multiplier}}$$

$$\label{eq:Times-interest-earned} Times-interest-earned \ (TIE) \ ratio = \frac{EBIT}{Interest \ charges}$$

$$\label{eq:ebitDA} \text{EBITDA} \text{ coverage ratio} = \frac{\text{EBITDA} + \text{Lease payments}}{\text{Interest} + \text{Principal payments} + \text{Lease payments}}$$

$$\label{eq:Net profit margin} Net \ profit \ margin = \frac{Net \ income \ available \ to \ common \ stockholders}{Sales}$$

Operating profit margin =
$$\frac{EBIT}{Sales}$$

$$Gross \ profit \ margin = \frac{Sales - Cost \ of \ goods \ sold}{Sales}$$

$$Return \ on \ total \ assets \ (ROA) = \frac{Net \ income \ available \ to \ common \ stockholders}{Total \ assets}$$

$$Basic \ earning \ power \ (BEP) \ ratio = \frac{EBIT}{Total \ assets}$$

$$ROA = Profit \ margin \times Total \ assets \ turnover = \frac{Net \ income}{Sales} \times \frac{Sales}{Total \ assets}$$

$$\label{eq:RoE} \text{Return on common equity } (\text{ROE}) = \frac{\text{Net income available to common stockholders}}{\text{Common equity}}$$

$$ROE = ROA \times Equity\ multiplier$$

$$= Profit\ margin \times Total\ assets\ turnover \times Equity\ multiplier$$

$$= \frac{\text{Net income}}{\text{Sales}} \times \frac{\text{Sales}}{\text{Total assets}} \times \frac{\text{Total assets}}{\text{Common equity}}$$

$$Price/earnings \ (P/E) \ ratio = \frac{Price \ per \ share}{Earnings \ per \ share}$$

$$Price/cash \ flow \ ratio = \frac{Price \ per \ share}{Cash \ flow \ per \ share}$$

Book value per share
$$=\frac{\text{Common equity}}{\text{Shares outstanding}}$$

$$Market/book (M/B) ratio = \frac{Market price per share}{Book value per share}$$

$$\mathrm{FV}_{\mathrm{N}} = \mathrm{PV}(1+\mathrm{I})^{\mathrm{N}}$$

$$PV = \frac{FV_N}{\left(1+I\right)^N}$$

$$FVA_N \ = \ PMT \Bigg[\frac{\left(1+I\right)^N}{I} - \frac{1}{I} \Bigg] = PMT \Bigg[\frac{\left(1+I\right)^N - 1}{I} \Bigg]$$

$$FVA_{due} = FVA_{ordinary}(1+I)$$

$$PVA_{N} = PMT \left[\frac{1}{I} - \frac{1}{I(1+I)^{N}} \right] = PMT \left[\frac{1 - \frac{1}{(1+I)^{N}}}{I} \right]$$

$$PVA_{Due} = PVA_{Ordinary}(1+I) \\$$

PV of a perpetuity =
$$\frac{PMT}{I}$$

$$PV_{Uneven \ stream} = \sum_{t=1}^{N} \frac{CF_t}{\left(1+I\right)^t}$$

$$FV_{Uneven \; stream} = \sum_{t=1}^{N} CF_t (1+I)^{N-t}$$

$$I_{PER} = \frac{I_{NOM}}{M}$$

$$APR = (I_{PER})M$$

Number of periods
$$= NM$$

$$\begin{aligned} & Number \ of \ periods = NM \\ & FV_N = PV(1+I_{PER})^{Number \ of \ periods} = PV \bigg(1+\frac{I_{NOM}}{M}\bigg)^{MN} \end{aligned}$$

$$EFF\% = \left(1 + \frac{I_{NOM}}{M}\right)^{M} - 1.0$$

$$V_{B} = \sum_{t=1}^{N} \frac{INT}{(1+r_{d})^{t}} + \frac{M}{(1+r_{d})^{N}}$$

$$\text{Semiannual payments: } V_B = \sum_{t=1}^{2N} \frac{INT/2}{\left(1+r_d/2\right)^t} + \frac{M}{\left(1+r_d/2\right)^{2N}}$$

$$\label{eq:Yield to maturity: Bond price} \begin{aligned} \text{Yield to maturity: Bond price} &= \sum_{t=1}^{N} \frac{INT}{\left(1 + YTM\right)^{t}} + \frac{M}{\left(1 + YTM\right)^{N}} \end{aligned}$$

Price of callable bond (if called at N) =
$$\sum_{t=1}^{N} \frac{INT}{\left(1+r_{d}\right)^{t}} + \frac{Call \ price}{\left(1+r_{d}\right)^{N}}$$

$$Current \ yield = \frac{Annual \ interest}{Bond's \ current \ price}$$

Current yield + Capital gains yield = Yield to maturity

$$r_{\rm d} = r^* + IP + DRP + LP + MRP$$

$$r_{RF} = r^* + IP$$

$$r_{d} = r_{RF} + DRP + LP + MRP$$

$$IP_N = \frac{I_1 + I_2 + \dots + I_N}{N}$$

Expected rate of return =
$$\hat{r} = \sum_{i=1}^{n} P_i r_i$$

$$\mbox{Historical average}, \tilde{r}_{Avg} = \frac{\displaystyle \sum_{t=1}^{n} \tilde{r}_{t}}{n}$$

$$Variance = \sigma^2 = \sum_{i=1}^n {(r_i - \hat{r})^2} P_i$$

Standard deviation =
$$\sigma = \sqrt{\sum_{i=1}^{n} (r_i - \hat{r})^2 P_i}$$

Historical estimated
$$\sigma \, = \, S = \sqrt{\frac{\displaystyle\sum_{t=1}^{n} (\tilde{r}_t - \tilde{r}_{Avg})^2}{n{-}1}}$$

$$CV = \sigma/\mathring{r}$$

$${\stackrel{\wedge}{r}}_p = \sum_{i=1}^n w_i {\stackrel{\wedge}{r}}_i$$

$$\sigma_p = \sqrt{\sum_{i=1}^n (r_{pi} - \hat{r}_p)^2 P_i}$$

$$\text{Estimated } \rho = R = \frac{\displaystyle\sum_{t=1}^{n} (\tilde{r}_{i,t} - \tilde{r}_{i,Avg}) (\tilde{r}_{j,t} - \tilde{r}_{j,Avg})}{\sqrt{\displaystyle\sum_{t=1}^{n} (\tilde{r}_{i,t} - \tilde{r}_{i,Avg})^2 \sum_{t=1}^{n} (\tilde{r}_{j,t} - \tilde{r}_{j,Avg})^2}}$$

$$COV_{iM} = \rho_{iM}\sigma_i\sigma_M$$

$$b_i = \bigg(\!\frac{\sigma_i}{\sigma_M}\!\bigg) \rho_{iM} = \!\frac{COV_{iM}}{\sigma_M^2}$$

$$b_p = \sum_{i=1}^n w_i b_i$$

Required return on stock market $= r_M$

Market risk premium = $RP_M = r_M - r_{RF}$

$$RP_i = (r_M - r_{RF})b_i = (RP_M)b_i$$

$$SML = r_i = r_{RF} + (r_M - r_{RF})b_i = r_{RF} + RP_Mb_i$$

$$\hat{P}_0 = PV$$
 of expected future dividends $= \sum_{t=1}^{\infty} \frac{D_t}{(1+r_s)^t}$

Constant growth:
$$\hat{P}_0 = \frac{D_0(1+g)}{r_s-g} = \frac{D_1}{r_s-g}$$

$$\hat{\mathbf{r}}_{s} = \frac{\mathbf{D}_{1}}{\mathbf{P}_{0}} + \mathbf{g}$$

Capital gains yield = $\frac{\hat{P}_1 - P_0}{P_0}$

Dividend yield = $\frac{D_1}{P_0}$

For a zero growth stock, $\hat{P}_0 = \frac{D}{r_s}$

 $\label{eq:horizon_value} Horizon \ value = Terminal \ value = \begin{picture}(100) \put(0,0) \pu$

$$V_{ps} = \frac{D_{ps}}{r_{ps}}$$

$${\stackrel{\wedge}{r}_{ps}} = \frac{D_{ps}}{V_{ps}}$$

 $\tilde{r}_s = Actual \ dividend \ yield + Actual \ capital \ gains \ yield$

CHAPTER 8

Exercise value = MAX[Current price of stock - Strike price, 0]

Number of stock shares in hedged portfolio = $N = \frac{C_u - C_d}{P_u - P_d}$

$$V_C = P[N(d_1)] - Xe^{-r_{RF}t}[N(d_2)]$$

$$\begin{aligned} d_1 &= \frac{ln(P/X) + [r_{RF} + (\sigma^2/2)]t}{\sigma\sqrt{t}} \\ d_2 &= d_1 - \sigma\sqrt{t} \end{aligned}$$

Put–call parity: Put option = V_C – P + $Xe^{-r_{RF}t}$

$$V \ of \ put = P[N(d_1) - 1] - Xe^{-r_{RF}t}[N(d_2) - 1]$$

CHAPTER 9

After-tax component cost of debt = $r_d(1 - T)$

$$M(1-F) = \sum_{t=1}^{N} \frac{INT(1-T)}{\left[1 + r_d(1-T)\right]^t} + \frac{M}{\left[1 + r_d(1-T)\right]^N}$$

$$r_{ps} = \frac{D_{ps}}{P_{ps}(1-F)} \label{eq:ps}$$

 $\mbox{Market equilibrium:} \ \ \frac{\mbox{Expected}}{\mbox{rate of return}} \ \ = \hat{r}_M = \frac{D_1}{P_0} + g = r_{RF} + RP_M = r_M = \ \ \frac{\mbox{Required}}{\mbox{rate of return}}, \label{eq:rate}$

where D₁, P₀, and g are for the market, not an individual company

Rep/Div = ratio of payouts via repurchases to payouts via dividends

 $r_M = \mathring{r}_M = (1 + \text{Rep/Div}) \frac{D_1}{P_0} + g$, where g is long-term growth rate in total payouts for the market and where D₁ and P₀ are for the market, not an individual company

CAPM:
$$r_s = r_{RF} + b_i(RP_M)$$

DCF: $r_s = {\stackrel{\wedge}{r}}_s = \frac{D_1}{P_0}$ Expected g in dividends per share

$$r_s = \frac{Company\text{'s own}}{bond \ yield} + \frac{Judgmental}{risk \ premium}$$

g = (Retention rate)(ROE) = (1.0 - Payout rate)(ROE)

$$r_e = \mathring{r}_e = \frac{D_1}{P_0(1-F)} + g$$

$$WACC = w_d r_d (1 - T) + w_{ps} r_{ps} + w_s r_s$$

CHAPTER 10

$$\begin{split} \text{NPV} &= \text{CF}_0 + \frac{\text{CF}_1}{\left(1+r\right)^1} + \frac{\text{CF}_2}{\left(1+r\right)^2} + \dots + \frac{\text{CF}_N}{\left(1+r\right)^N} \\ &= \sum_{t=0}^N \frac{\text{CF}_t}{\left(1+r\right)^t} \\ \text{IRR: CF}_0 &+ \frac{\text{CF}_1}{\left(1+\text{IRR}\right)^1} + \frac{\text{CF}_2}{\left(1+\text{IRR}\right)^2} + \dots + \frac{\text{CF}_N}{\left(1+\text{IRR}\right)^N} = 0 \end{split}$$

IRR:
$$CF_0 + \frac{CF_1}{(1 + IRR)^1} + \frac{CF_2}{(1 + IRR)^2} + \dots + \frac{CF_N}{(1 + IRR)^N} = 0$$

$$NPV = \sum_{t=0}^{N} \frac{CF_t}{(1 + IRR)^t} = 0$$

MIRR: PV of costs = PV of terminal value

$$\sum_{t=0}^{N} \frac{COF_{t}}{{(1+r)}^{t}} = \frac{\sum_{t=0}^{N} CIF_{t}{(1+r)}^{N-t}}{{(1+MIRR)}^{N}}$$

PV of costs =
$$\frac{\text{Terminal value}}{(1 + \text{MIRR})^{N}}$$

$$PI = \frac{PV \ of \ future \ cash \ flows}{Initial \ cost} = \frac{\displaystyle \sum_{t=1}^{N} \frac{CF_t}{\left(1+r\right)^t}}{CF_0}$$

$$Project \ cash \ flow = FCF = \frac{Investment \ outlay}{cash \ flow} + \frac{Operating}{cash \ flow} + \frac{NOWC}{cash \ flow} + \frac{Salvage}{cash \ flow}$$

$$Expected\ NPV = \sum_{i=1}^n P_i(NPV_i)$$

$$\sigma_{NPV} = \sqrt{\sum_{i=1}^{n} P_i (NPV_i - Expected \ NPV)^2}$$

$$CV_{NPV} = \frac{\sigma_{NPV}}{E(NPV)}$$

CHAPTER 12

AFN =
$$(A^*/S_0)\Delta S$$
 - $(L^*/S_0)\Delta S$ - $MS_1(1 - Payout ratio)$

Target fixed assets/Sales = $\frac{\text{Actual fixed assets}}{\text{Full capacity sales}}$

 $\frac{Required\ level}{of\ fixed\ assets} = (Target\ fixed\ assets/Sales)(Projected\ sales)$

CHAPTER 13

$$V_{op}$$
 = Value of operations

= PV of expected future free cash flows

$$= \, \sum_{t=1}^{\infty} \frac{FCF_1}{\left(1 + WACC\right)^t}$$

$$\label{eq:Vop(at time N)} Horizon \ value: \ V_{op(at \ time \ N)} = \frac{FCF_{N+1}}{WACC-g} = \frac{FCF_{N}(1+g)}{WACC-g}$$

Total value = $V_{\rm op}$ + Value of nonoperating assets

 $Value\ of\ equity = Total\ value\ -\ Preferred\ stock\ -\ Debt$

Operating profitability (OP) = NOPAT/Sales

Capital requirements (CR) = Operating capital/Sales

$$\begin{split} EROIC_t &= Expected \ return \ on \ invested \ capital \\ &= NOPAT_{t+1}/Capital_t \\ &= NOPAT_t(1+g)/Capital_t \\ &= OP_{t+1}/CR_t \end{split}$$

For constant growth:

$$\begin{split} V_{op(at \; time \; N)} &= Capital_N + \left[\frac{Sales_N(1+g)}{WACC-g}\right] \left[OP - WACC\left(\frac{CR}{1+g}\right)\right] \\ &= Capital_N + \frac{Capital_N(EROIC_N - WACC)}{WACC-g} \\ &= Capital_N + \frac{Capital_N\left(\frac{OP_{N+1}}{CR_N} - WACC\right)}{WACC-g} \end{split}$$

CHAPTER 14

Residual distribution = Net income - [(Target equity ratio)(Total capital budget)]

$$Number \ of \ shares \ repurchased = n_{Prior} - n_{Post} = \frac{Cash_{Rep}}{P_{Prior}}$$

$$n_{Post} = n_{Prior} - \frac{Cash_{Rep}}{P_{Prior}} = n_{Prior} - \frac{Cash_{Rep}}{S_{Prior}/n_{Prior}} = n_{Prior} \bigg(1 - \frac{Cash_{Rep}}{S_{Prior}} \bigg)$$

$$V_{op} = \sum_{t=1}^{\infty} \frac{FCF_t}{\left(1 + WACC\right)^t}$$

$$WACC = w_d(1 - T)r_d + w_s r_s$$

$$ROIC = \frac{NOPAT}{Capital} = \frac{EBIT(1-T)}{Capital}$$

$$EBIT = PQ - VQ - F$$

$$Q_{BE} = \frac{F}{P-V} \label{eq:QBE}$$

$$V_L = D + S$$

MM, no taxes:
$$V_L = V_U$$

MM, corporate taxes:
$$V_{\rm L} = V_{\rm U}$$
 + TD

Miller, corporate and personal taxes:
$$V_L = V_U + \left[1 - \frac{(1 - T_c)(1 - T_s)}{(1 - T_d)}\right]D$$

$$b = b_{\rm U}[1 + (1 - {\rm T})({\rm D/S})]$$

$$b_{\rm U} = b/[1 + (1 - T)(D/S)]$$

$$r_s = r_{RF} + RP_M(b)$$

 $r_s = r_{RF}$ + Premium for business risk + Premium for financial risk

If
$$g = 0$$
: $V_{op} = \frac{FCF}{WACC} = \frac{NOPAT}{WACC} = \frac{EBIT(1 - T)}{WACC}$

Total corporate value = $V_{\rm op}$ + Value of short-term investments

S = Total corporate value – Value of all debt

$$D = w_d V_{op}$$

$$S = (1 - w_d)V_{op}$$

Cash raised by issuing $debt = D - D_0$

$$P_{Prior} = S_{Prior}/n_{Prior}$$

$$P_{Post} = P_{Prior}$$

$$n_{Post} = n_{Prior} \left[\! \frac{V_{opNew} - D_{New}}{V_{opNew} - D_{Old}} \! \right] \label{eq:nPost}$$

$$n_{Post} = n_{Prior} - (D_{New} - D_{Old}) / P_{Prior}$$

$$P_{Post} = \frac{V_{opNew} - D_{Old}}{n_{Prior}}$$

$$NI = (EBIT - r_dD)(1 - T)$$

$$EPS = NI/n$$

CHAPTER 16

Inventory conversion period =
$$\frac{Inventory}{(Cost \text{ of goods sold})/365}$$

Receivables collection period =
$$DSO = \frac{Receivables}{Sales/365}$$

Payables deferral period =
$$\frac{\text{Payables}}{(\text{Cost of goods sold})/365}$$

$$\begin{array}{l} Accounts \\ receivable \end{array} = \begin{array}{l} Credit \ sales \\ per \ day \end{array} \times \begin{array}{l} Length \ of \\ collection \ period \end{array}$$

$$ADS = \frac{(Units \ sold)(Sales \ price)}{365} = \frac{Annual \ sales}{365}$$

Receivables = (ADS)(DSO)

$$\frac{\text{Nominal annual cost}}{\text{of trade credit}} = \frac{\text{Discount percentage}}{100 - \frac{\text{Discount}}{\text{percentage}}} \times \frac{365}{\frac{\text{Days credit is}}{\text{outstanding}} - \frac{\text{Discount}}{\text{period}}}$$

 $\frac{Single\text{-period interest}}{rate\ parity}: \frac{Forward\ exchange\ rate}{Spot\ exchange\ rate} = \frac{1+r_h}{1+r_f}$

Expected t-year forward exchange rate = $(Spot rate) \left(\frac{1+r_h}{1+r_f}\right)^t$

 $P_h = (P_f)(Spot rate)$

Spot rate = $\frac{P_h}{P_f}$

CHAPTER 18

NAL = PV cost of owning – PV cost of leasing

CHAPTER 19

 $\frac{\text{Price paid for}}{\text{bond with warrants}} = \frac{\text{Straight-debt}}{\text{value of bond}} + \frac{\text{Value of}}{\text{warrants}}$

Conversion price $= P_c = \frac{Par \text{ value of bond given up}}{Shares received}$ $= \frac{\text{Par value of bond given up}}{\text{CR}}$ Conversion ratio = $CR = \frac{Par \text{ value of bond given up}}{P}$

CHAPTER 20

Amount left on table = (Closing price – Offer price)(Number of shares)

CHAPTER 21

$$r_{sL} = r_{sU} + (r_{sU} - r_d)(D/S)$$

$$r_{sU} = w_s r_{sL} + w_d r_d$$

Tax savings = (Interest expense)(Tax rate)

 $\frac{\text{Horizon value of}}{\text{unlevered firm}} = \text{HV}_{\text{U,N}} = \frac{\text{FCF}_{\text{N+1}}}{r_{\text{sU}} - g} = \frac{\text{FCF}_{\text{N}}(1+g)}{r_{\text{sU}} - g}$

 $\frac{\text{Horizon value of}}{\text{tax shield}} = \text{HV}_{\text{TS,N}} = \frac{\text{TS}_{\text{N}+1}}{\text{r}_{\text{sU}} - \text{g}} = \frac{\text{TS}_{\text{N}}(1+\text{g})}{\text{r}_{\text{sU}} - \text{g}}$

$$V_{Unlevered} = \sum_{t=1}^{N} \frac{FCF_{t}}{(1 + r_{sU})^{t}} + \frac{HV_{U,N}}{(1 + r_{sU})^{N}}$$

$$V_{Tax~shield} = \sum_{t=1}^{N} \frac{TS_t}{\left(1 + r_{sU}\right)^t} + \frac{HV_{TS,N}}{\left(1 + r_{sU}\right)^N}$$

Value of operations = $V_{op} = V_{Unlevered} + V_{Tax \ shield}$

$$= \frac{\text{Free}}{\text{cash flow}} - \frac{\text{Interest}}{\text{expense}} + \frac{\text{Interest}}{\text{tax shield}} + \frac{\text{Net change}}{\text{in debt}}$$

$$FCFE = Net \ income - \frac{Net \ investment \ in}{operating \ capital} + \frac{Net \ change}{in \ debt}$$

$$HV_{FCFE,N} = \frac{FCFE_{N+1}}{r_{sI} - g} = \frac{FCFE_{N}(1+g)}{r_{sI} - g}$$

$$V_{FCFE} = \sum_{t=1}^{N} \frac{FCFE_t}{\left(1 + r_{sL}\right)^t} + \frac{HV_{FCFE,N}}{\left(1 + r_{sL}\right)^N}$$

 $S = V_{FCFE}$ + Nonoperating assets

$$\frac{Total \ value \ of \ shares \ to \ target \ shareholders}{Total \ post-merger \ value \ of \ equity} = \frac{Percent \ required \ by}{target \ stockholders} = \frac{n_{New}}{n_{New} + n_{Old}}$$

$$\stackrel{\wedge}{r}_p = w_A \stackrel{\wedge}{r}_A + (1 - w_A) \stackrel{\wedge}{r}_B$$

Portfolio SD =
$$\sigma_p = \sqrt{w_A^2\sigma_A^2 + (1-w_A)^2\sigma_B^2 + 2w_A(1-w_A)\rho_{AB}\sigma_A\sigma_B}$$

Minimum-risk portfolio:
$$w_A = \frac{\sigma_B(\sigma_B - \rho_{AB}\sigma_A)}{\sigma_A^2 + \sigma_B^2 - 2\rho_{AB}\sigma_A\sigma_B}$$

$${\stackrel{\wedge}{r}_p} = \sum_{i=1}^N \left(w_i {\stackrel{\wedge}{r}_i} \right)$$

$$\sigma_p^2 = \sum_{i=1}^N \; \sum_{j=1}^N \left(w_i \; w_j \; \sigma_i \; \sigma_j \; \rho_{ij} \right) \label{eq:sigmap}$$

$$\sigma_{p}^{2} = \sum_{i=1}^{N} \ w_{i}^{2} \ \sigma_{i}^{2} + \sum_{i=1}^{N} \ \sum_{\substack{j=1 \\ i \neq i}}^{N} w_{i} \ \sigma_{i} \ w_{j} \ \sigma_{j} \ \sigma_{ij}$$

$$\sigma_p = \sqrt{\left(1-w_{RF}\right)^2 \sigma_M^2} = (1-w_{RF}) \sigma_M$$

$$CML: \, {\stackrel{\wedge}{r}}_p = r_{RF} + \Bigg(\frac{{\stackrel{\wedge}{r}}_M - r_{RF}}{\sigma_M} \Bigg) \sigma_p$$

$$r_i = r_{RF} + \frac{(r_M - r_{RF})}{\sigma_M} \bigg(\frac{Cov(r_i, r_M)}{\sigma_M} \bigg) = r_{RF} + (r_M - r_{RF}) \bigg(\frac{Cov(r_i, r_M)}{\sigma_M^2} \bigg)$$

$$b_i = \frac{Covariance \ between \ Stock \ i \ and \ the \ market}{Variance \ of \ market \ returns} = \frac{Cov(r_i, r_M)}{\sigma_M^2} = \frac{\rho_{iM}\sigma_i\sigma_M}{\sigma_M^2} = \rho_{iM}\left(\frac{\sigma_i}{\sigma_M}\right)$$

$$SML = r_i = r_{RF} + (r_M - r_{RF})b_i = r_{RF} + (RP_M)b_i$$

$$\sigma_i^2 = b_i^2 \sigma_M^2 + \sigma_e^2$$

APT:
$$r_i = r_{RF} + (r_1 - r_{RF})b_{i1} + \cdots + (r_j - r_{RF})b_{ij}$$

Fama-French:
$$r_i = r_{RF} + a_i + b_i(r_M - r_{RF}) + c_i(r_{SMB}) + d_i(r_{HML})$$

$$CV = \frac{\sigma(PV \text{ of future CF})}{E(PV \text{ of future CF})}$$

Variance of project's rate of return: $\sigma^2 = \frac{\ln(CV^2 + 1)}{t}$

CHAPTER 26

MM, no taxes:

$$V_{L} = V_{U} = \frac{EBIT}{WACC} = \frac{EBIT}{r_{sU}}$$

$$r_{sL} = r_{sU} + Risk \ premium = r_{sU} + (r_{sU} - r_d)(D/S)$$

MM, corporate taxes:

$$\begin{split} V_L &= V_U + TD \\ V_U &= S = \frac{EBIT(1-T)}{r_{sU}} \\ r_{sL} &= r_{sLL} + (r_{sLL} - r_d)(1-T)(D/S) \end{split}$$

Miller, personal taxes:

$$V_U = \frac{EBIT(1-T_c)}{r_{sU}} = \frac{EBIT(1-T_c)(1-T_s)}{r_{sU}(1-T_s)} \label{eq:vu}$$

$$CF_L = (EBIT - I)(1 - T_c)(1 - T_s) + I(1 - T_d)$$

$$V_L = V_U + \left[1 - \frac{(1 - T_c)(1 - T_s)}{(1 - T_d)}\right] D$$

Ehrhardt & Daves, impact of growth:

$$V_{U} = \frac{FCF}{r_{sU} - g}$$

General case:

$$\begin{split} V_L &= V_U + V_{Tax~shield} \\ V_{Tax~shield} &= \frac{r_d TD}{r_{TS} - g} \\ V_L &= V_U + \left(\frac{r_d}{r_{TS} - g}\right) TD \end{split}$$

Case for $r_{TS} = r_{sU}$:

$$V_L = V_U + \left(\frac{r_d TD}{r_{sU} - g}\right)$$

$$r_{sL} = r_{sU} + (r_{sU} - r_d) \frac{D}{S} \label{eq:rsl}$$

$$b = b_U + (b_U - b_D) \frac{D}{S}$$